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The Keller box method (“Numerical Solutions of Partial Differential Equations, Vol. 2” 
(B. Hubbard, Ed.), pp. 327-350, Academic Press, New York, 1970) was applied to incom- 
pressible ftow past a flat plate to demonstrate that the basic computation region must extend 
outward from the wail until the outer boundary conditions are effectively obtained. The KeiieT 
box method was modified to include an asymptotic outer solution for the case of the seif- 
similar solution for compressible flow in a boundary layer. Initial application of the basic and 
modified Keller box methods to incompressible flow past a flat plate showed similar rates of 
convergence but smaller RMS error for the same basic range of the independent variable when 
the asymptotic outer solution is applied. Furthermore, extension of the solution beyond the 
range of the independent variable for the numerical solution using the resulting asymptotic 
solution produced RMS error at least as small as the RMS error on the range of the numerical 
solution. Also, when the asymptotic solution was applied, a smaller range of independent 
variables could be used in the numerical solution to obtain the same RMS error. Numerical 
results for compressible flow were qualitatively the same as for the case with the incom- 
pressible velocity profile except the rate of iterative convergence was slightly slower. 
Application of asymptotic outer solution for incompressible flow at a two dimensional 
stagnation point produced similar results with smaller relative improvements. For 
compressible flow with smaller favorable pressure gradients than the stagnation point and 
with adverse pressure gradients, significant improvements were again obtained. Examination 
of the errors associated with the asymptotic solution reveals that greatest success is obtained 
for flows with thicker boundary layers and shows that the boundary layer at a two dimen- 
sional stagnation point is too thin for small error in the asymptotic solution. Despite relatively 
large errors in the asymptotic solutions for boundary layer in strong favorable pressure 
gradients where the boundary layer is thin, the boundary layer solutions generally showed 
improvement in error and reduction in computation times. 

The Keller box method [ 1 ] has become a popular method for obtaining ~~~-s~rn~l~ 
solutions for boundary layer problems. The method has been extended ]2] an 
compared with other techniques by Blottner [3,4]. In this method, the system 01 
partial differential equations for the viscous boundary layer are approximate 
rectangular net in physical or transformed coordinates. These approximate ~u~t~o~s 
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are linearized with all terms evaluated using values of the flow variables at the 
corners of each “box” in the rectangular net. As a result, the conservation equations 
for the boundary layer are reduced to a system of algebraic equations with the 
boundary conditions included. In the solution procedure, the solution must be known 
on an upstream cross section of the boundary layer and requires the solution of a 
system of algebraic equations, which is implicit with respect to variations normal to 
the boundary layer, at successive streamwise locations in the rectangular mesh. 

The outer boundary conditions on the boundary layer are actually approached 
asymptotically and are only attained at large distances from the inner boundary. 
Therefore, the usual application of the outer boundary conditions at finite values of 
the normal coordinate as in Refs. [l-4] could produce significant error. 

The asymptotic behavior of the boundary layer solution for large distances from 
the inner boundary is often of interest (as in the method of matched asymptotic 
expansions [5]) and will certainly be in error if the outer boundary conditions for a 
numerical solution are applied “too close” to the inner boundary. Consequently, 
inclusion of the asymptotic behavior in the Keller box method should give the 
resulting solution greater utility. 

The purpose of the present investigation was twofold. First, the effect of applying 
the asymptotic outer boundary condition at finite distances from the surface was 
explored. Second, an outer asymptotic solution was incorporated into a numerical 
solution and its applicability was studied. For the preliminary analysis with 
asymptotic solution, the special case of a self-similar solution was treated as in [3,4] 
in order to reduce computation times. Results for the basic Keller box method were 
sought in order to present rational comparisons. 

THE BASIC KELLER Box METHOD 

The analytical development of the basic Keller box method is reviewed first since 
the exact method used to evaluate the sensitivity of calculations to the location of the 
outer boundary should be recorded. Furthermore, the modifications to the basic 
method due to the inclusion of the asymptotic solution were minor and only one 
complete presentation is necessary. 

If temperature, 7(x, v), is non-dimensionalized with the edge temperature, T,(X), 
and the stream function, w, is introduced to satisfy conservation of mass identically, 
the velocity components, U(X, v) and 0(x, u), and non-dimensionalized temperature, 
0, are given by 

Then, the parallel and normal coordinates, x and y, and the stream function can be 
transformed with 
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V(X> Y) = g(4) f(r7 r>, gw = dzcpi (3) 
which reduces the equations for conservation of momentum and energy with a 
calorically perfect gas to 

where 

,!? = - -L = pressure gradient parameter, 
u, dt 

pR2.g. (3 

K is the usual constant in the boundary layer transformation but G, is a new co 
introduced in order to make the coefficients of the incompressible form of (4) 
consistent with the differential equations for known exact solutions. @,LL), denotes a 
reference density-viscosity product which is normally the wall or edge value. The 
appropriate boundary conditions are 

@(r, r) = 0, as q becomes infinite. 

For this exploratory analysis, the self-similar solution df and 0 as functions of 
only) was sought such that the right sides of (4) and (5) are zero and these equa~~~~s 
become ordinary differential equations. The first step of the box method a~p~~e~ to 
this problem is to create a system of first order equations by introducing the new 
variables, U, V and W, defined as follows: 

f’ = u, f” = U’ = v, 0’ = (W 

An iteration procedure is used to solve the system of equations. The s~~ers~~i~t i 
indicates the quantity for the ith iteration with 

“&j--l +(y, ui= vi-1 + a;, vi= vi-1 +& 

@=@i-l+d;, w’= w’-” +si,, Ul) 
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where S$, 6;, Si,, S& and Si, are the ith iterates for f, U, V, 0, and W and will 
produce “small” changes if the procedure converges. For the present compressible 
case, the function ii(O) was expanded in a Taylor’s series such that 

F’ 5 F(@‘) = F(@‘- ‘) + Fl(@‘-1) & = F’- 1 + (F’)‘-’ 8;. (12) 

The computational mesh was defined by 

Vj= Vj-1 + CAV>j for j=2,3 ,..., J, (13) 

where r, = 0 and qJ = qmax. The Prandtl number was assumed to be constant and 
central differences are introduced at the midpoints of the mesh, Tlj-,,* = i(qj -t vi-,) 
such that (4), (5) and (10) become 

Gjajj-, + Ajax + S;.Sij-, + bjSLj + c8Lj-, + c~S;, + L?~S~~-, + djSAj = sj, (16) 

tijjsij-, + CtjSi + pja;.SLj-, +pjSLj + jjjSij-, + Yj&j + $si,-, + Cjsiw, = tj9 (18) 

where the undefined coefficients depend upon the method used to evaluate the product 
terms. 

As in [4], one technique for calculating the product terms, which will be 
designated by I = 0, is 

CfV)j-~*=~[(fV)j+(fV)j-ll=f[fjVj+J;.-lVj-ll (19) 

such that a product at the midpoint is evaluated as the average of the products at the 
neighboring mesh points. An alternative technique for calculating the product terms 
will be designated by I= 1 and applies 

(fv>,-,*=f;.-,,*vj-l/*=$~+J;:-I)(vj+ vj-l>* (20) 

Here the product at the midpoint is evaluated as the product of the midpoint values. 
The form of (19) and (20) was extended to all product terms. 

The boundary conditions from (8) become 

cy, = 0 = S&) fy=o=q, (21) 

(1 -m) sg, + ms’,, = 0, (1 - m)(@ - 0,) + m( wy - 0;) = 0, (22) 
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where m = 0 reduces (22) to the wall temperature condition and m = 1 yields the wall 
flux condition. For the basic Keller box method, the outer boundary conditions are 
applied at the outermost mesh point, q = urnax or j = J, with 

This system of equations has five equations for each j and forms a linear, block 
tridiagonal matrix which can be solved efficiently [2]. 

The outer boundary conditions in (9) are only approached asymptotically for very 
large 9. However, calculations will be more economical if qmax is reduced. As will be 
shown later, considerable error can result if qmax is reduced ‘“too much” for the basic 
box method. Therefore, incorporation of an asymptotic behavior can be advan- 
tageous. 

THE KELLER Box METHOD WITH ASYMPTOTIC OUTER SQLUTION 

Since the boundary conditions in (9) are approached asymptotically, F(O) 
approaches P, = F(O,) asymptotically. In a manner similar to the original Blasius 
solution for a flat plate [6] the form chosen for an asymptotic solution is 

f(r>=(fb,r+~)+fi(rh A = a constant, (241 

@(VI = 0, + O,(r), F(O) = F, + F’(8,) O,(q), W? 

where the leading terms are assumed to be much larger than the next terms in each 
equation. Substitution of (24) and (25) into (4) and (5) and neglect of the nonlinear 
terms yields 

(26) 

As q becomes infinite, asymptotic approach to the boundary conditions in (9) 
requires that fi and 0, and their derivatives become zero. 

Equation (27) is a linear equation for O’, . Its solution subject to the outer 
boundary conditions produces 

fW 

erfc l= the complementary error function = (2/G) irn e-” dt. 
I 
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The inhomogeneous term in (26) is a function of c and will be proportional to B. 
Furthermore, the asymptotic outer boundary conditions require that the 
complementary solution will have only one arbitrary constant. Therefore, the solution 
for fr(r) will have the form 

fib) = G(t) = BG,(C;) + CG,(O (29) 

which reduces (26) to 

L(G) ES G” + + &” - ; G’ = -2/3B 
2 erfc (. 

Rco R, “$R, U-3 
(30) 

The solution of (30) has two special cases. When the pressure gradient is zero 
@=O), (30) ’ h IS omogeneous and has an exact solution with 

G,(r) = (27c1’*/PR,) i’ erfc(</P$‘), G,(t) = 0, (31) 

where 

When the pressure gradient is nonzero, a series solution for G,(l) and its derivatives 
is given by 

G,(t) = e-bz/pR, 5 Ait-*(i+l+B), 

i=O 

-2 
(32) 

W) = p 
R, i=O 

(33) 

where 

A,=B,= 1 =Co=Do, (34) 

Bi= (i+/3)[1--2(i+/?)]%/Bi-,, 
1 

Ai=Bi-PRm(i+p)Ai-l, (35) 

Ci=% [l -2(i+@]Bi_l, Di=Ci-PP,m[l-(l +p)] Ci-1. (36) 
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For the special case of unit Prandtl number, 

417 

(37) 

When P,, is not unity, it is convenient to introduce 

G,(t) = P&(0/ I4 ~“‘qfl,)’ (P,-111 (38) 

and the asymptotic solution for erfc 5 such that the series solution for F,,(5) is 

F;(t) = e -I' 7 ci<-2(l-iJ, _ 
i-0 

A,,=Bo= 1 =Co=Do, 

E,= I, E, = (- 1)” 
1 * 3 * 5 .*. (2m- i) (4i) 

2* 
for n! > 0. 

jCi- 1 --Bj-, B P 
R, 

I ,B,=c,-L2i+1) , , ___ 2 B. 11, (42) 

Ai=Bi-(1 +i)Ai-,,D,=Ci+iCi-,. (43) 

Equations (24) (28) and (29) with (31) to (43) give the asymptotic solution for J 
u= j-1, v= f”, 0, W= 0’ with three arbitrary coefficients (A, B and C). 
Specification of the coeffkients completes the asymptotic solution and these coef- 
ficients must be determined as part of the iterative solution. Assuming that the coef- 
ficients also change little between iterations, this asymptotic solution can be 
employed to find the ith iterates of the basic Keller box method at the outermost q as 
follows: 

(44) 

(45) 

(44) 
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where 

8; =A’--Ai-l, & = Bi _ Bi- 1, (sj; = c’ _ c’- 1. 
(47) 

Equations (44) to (47) were used to replace the five ith iterates (Si, SL, 6$, S&, 
and 8;) by the three iterates (65, SL, and S,!J as unknowns at the outermost q (i.e., 
j=J) in the block matrix for the basic box method. As a result, a new block 
tridiagonal matrix is obtained for the $j, Shj, 2jLj, “Bj, and “Lj for all j ( J and also 
for the 6:) &, and Sk. 

NUMERICAL RESULTS AND DISCUSSION 

One factor of interest is the rate of convergence of the modified box method and 
the basic Keller box method. The variation of wall stress from one iteration to the 
next iteration is the convergence test used by many investigators. However, the entire 
profile, particularly the profile at large q, is of interest here and the parameter used 
was 

+ (6Lj)2 + (s&j)2] 1 l’*. (48) 

Additional parameters of interest for the incompressible flow cases where the exact 
solutions exist are 

(RMS Error in f, f’ and fN)’ 

where N is the number of r values in the table for the exact solution. Also 

(RMS Error in f, f’, f”, 0 and @‘)i 

= { [RMS Error in f, f’ and fn)i]2 + [(RMS Error in 0 and @‘)‘I’} “*. (51) 

The solution for incompressible flow past a flat plae is well known [7] and was 
used as a basic test of the solution procedures. The flat plate solution for f is readily 
obtained from the present procedure with p = 0 and F(O) = 1. Then (4) becomes 
decoupled from (5) and with C, = 4 the usual boundary value problem for f with 
incompressible flow is obtained. 
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In these exploratory calculations, a constant mesh size, (L@)~ = 0.2, was chosen to 
allow direct comparison with the tabulation of the exact solution for an into 
pressible flat plate [7]. Furthermore, the condition PR = 1 was imposed so the exact 
(Crocco) solution for temperature could be extracted directly from the exact velocity 
solution with 

(521 

where 

c, = [(@m - 0, + WV f’llfb, when in = 0 

= @‘,/f”(O) when m=f. 

Initial profiles (i = 0) are necessary to start the iteration process. For the present 
calculation, a procedure very similar to that of lasius j6] is followed. The 
asymptotic solutions of (24) and (28) to (43) were joined TV polynomials for f and 
at small q. By equating f, f’ and 0 at a selected value of & relations between the 
arbitrary coefficients of the inner and outer solutions were obtained. The outer 

FIG. 1. The RMS deviation for the incompressible flat plate flow using the basic Keller box method 
with the infinity boundary conditions applied at q of q,,,,, for a constant wall temperature of (m = 51, 
l=l,y=1.4,M=4,F=l=P,and~=O. 
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boundary conditions are included in (28) and (29) and the wall boundary conditions 
were then applied to evaluate the coefficients of the polynomials. This matching 
process produces the coefficients of the polynomials and the initial values of the coef- 
ficients for the asymptotic solution (A’, B” and Co). 

Figures 1 to 6 present results for y = 1.4, M= 4, F(O) = I = 1 = PR(0), and 
P=O=m (with O,=l). Th is wall temperature condition was chosen since the 
resulting temperature profile will have a maximum which should provide a non-trivial 
test of the method. From Fig. 1, it is apparent that the rate of convergence of the 
basic Keller box method is virtually independent of qmax. Since the tabulations for 
the exact solution [7] show that f and its derivatives vary quite rapidly in the region 
of r = 4 and s’ > 0.99 only for q > 4.9, it was surprising that the method converges 
so rapidly for qmax = 4. Note that the common definition of boundary layer thickness 
is the value of y where f’ = 0.99. 

The RMS error in f, f ‘, f”, 0 and 0’ shown in Fig. 2 is greater than 50% for 

l"'F 

*)(,@I” , ,I , , , , 
I2 3 4 5L6 7 8 910 

FIG. 2. The RMS error in the velocity and temperature profiles for the incompressible flat plate flow 
using the basic Keller box method with the infinity boundary conditions applied at q of vrnax for a 
constant wall temperature (m = 0), I= 1, y  = 1.4, A4 = 4, N = J, F = 1 = P, and /I = 0. 
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T=IG. 3. The velocity profile for the incompressible fiat plate flow using the basic Keller box method 
with the infinity boundary conditions applied at urn,. of 6 for a constant wall temperature (N2 = O), ! = II 

y=IA,M=4 andF=i=P,. 

1.8 

; 

EXACT SOLUTION 

I .7 

1.6 

1.5 

Q 
1.4 QO.6 

I .3 -0.4 

1.2 

I I 

I .o 

0.9 
0 I2 3 4 5 6-9 

?) 

FIG. 4. The temperature profile for the incompressible fiat plate flow using the basic Keller box 
method with infinity boundary conditions applied at qmax of 6 for constant wall temperature (ne = O), 

i=1,y=1,4,M=4,andF=1=PR. 
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r max = 4. With increasing qmax, the accuracy improves and for qmax > 6, the 
accuracy increased rapidly for increasing i with the best accuracy essentially attained 
by the third iteration. For qmax = 6, the velocity and temperature profiles shown in 
Figs. 3 and 4 effectively converge to the exact solution by the second iteration. It is 
apparent that reasonable accuracy is not obtained unless qmax is sufficiently large that 
the outer boundary condition is effectively attained even though iterative convergence 
may be obtained for much smaller qmax. 

Figures 5 and 6 present comparable results for the modified Keller box method 
with asymptotic solution. From Fig. 5, it would appear that this method does not 
converge as rapidly, particularly for the cases with smaller rmax. Figure 6 presents 
the RMS error on the complete range of the tabulation (0 < q < 8.8). For qma, < 8.8, 
the computed values were extended using the asymptotic solutions. Comparisons of 
the RMS error in Figs. 2 and 6 shows that inclusion of the asymptotic solution will 
produce a solution which is as accurate as a solution from the original box method 
with significantly larger rmax. Also the asymptotic solution was successfully applied 
to extend he solution to the outer limit of the tabulated exact solution for the velocity 
profile [6]. The velocity and temperature profiles with asymptotic solution effectively 

i 

FIG. 5. The RMS deviation for the incompressible flat plate flow using the modified Keller box 
method with the asymptotic solution applied for I] > r,~,,,~~, constant wall temperature (m = 0), y = 1.4, 
M=4andF=l=P,. 
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2 3 4 5 6.7 8 9 IO 

FIG. 6. The RMS error in the velocity and temperature profiles for the incompressible flat p!ate Bow 
using the modified Keller box method with the asymptotic solution applied for q > qmax, constant wall 
temperature(m=0),i=1,y=1.4,M=4,N=JandF=1=PR. 

converge to the exact solution by the third iteration for a value of qrnax = 4, where the 
basic Keller box method is not accurate. 

Results were also obtained for the same flow (y = 2.4, M = 4, 
F(O)= 1 =BR, and 0, = 1) with the alternate algorithm (I = 0). The rate oE 
convergence for the basic and modified box methods were very close to the results 
shown in Figs. 1 and 5. Also, the RMS errors were ~ua~itat~ve~y the same but the 
errors for the converged solutions were larger. The velocity and temperature prances 
were in agreement with the profiles of the previous case (I = 1) except that the 
algorithm with I = 0 does not have as smooth an iterative convergence for the 
velocity profile since the deviations for the first iteration are larger. 

The RMS error for the converged solutions with E of 0 and 1 are ~ornpar~~ in 
Fig. 7. For the RMS error on the range of the exact solution (0 to 8.8), the solutions 
with the basic Keller box method are extended from qmax to 8.8 with the ~bv~~~s 
choice 

f” = 0, 4”’ = 1, f=f(rlmax)+f’,(r-71,,,)1 @‘=O, @=@,. (53) 
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It is apparent that the solution with outer asymptotic solution is better than the 
solution with the original box method for small rmax. The asymptotic solution 
significantly improves accuracy for rmax less than 6 when I= 0 and for urnax less than 
7 when I = 1. However, the algorithm with I= 0 produces much larger error for both 
methods. 

Next, the adiabatic wall boundary condition (0; = 0 with m = 1) was applied to 
the same incompressible flow with ,f3 = 0, y = 1.4, M= 4, and F(O) = 1 = PR(0) 
using the more accurate algorithm (I= 1). The RMS deviations and errors were 
qualitatively the same as the previous results for this algorithm. The velocity and 
temperature profiles also converged in virtually identical iterations. The RMS errors 
for the converged solutions in Fig. 8 are qualitatively the same as the previous results 
in Fig. 7 but the error at larger qmax is approximately a factor of 2 larger. 

For a final test case with the flat plate the compressible flow of a perfect gas with 
y = 1.4, constant coefficient of viscosity so F(O) = l/O, P, = 1, M = 4, constant wall 
temperature 0, = 1, and I= 0 (the least accurate algorithm) was considered. Since a 
well documented solution was not available, the solution from the modified Keller 
box method for rmax = 8.8 was used as the “standard” of comparison replacing the 
exact solution to compute an RMS difference (instead of error) using (5 1). The major 
difference between these results and the previous results is that convergence is a little 
slower for larger qmax. The convergence of the velocity and temperature profiles 
showed larger difference between iterations but practical convergence which is essen- 
tially as rapid as that for the previous case. 

@.=I, 7=1.4, -I=4 

3 
w 

e 
- e-o 

2 
Y 
+5- 
90* 

B 
53 INFINITY BC APPLIED 

g 
Q 

2 
-. 
ad” 

z 

d 
E 

MA% \L--- -_____ L-_ ~--------====~==~==,- 
w 

FIG. 7. Comparison of the RMS errors in the converged solution for the incompressible flat plate 
flow using the basic and modified box methods with constant wall temperature (m = 0), y = 1.4, M= 4 
and F = 1 = P, for I = 0 and 1 on the computation region (0 to rmar ) and the extended region (0 to 8.8). 
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FIG. 8. Comparison of the errors in the converged solution for the incompressible flat plate using 
the basic and modified box methods with adiabatic wall (m = l), y  = 1.4, M = 4 and F = 1 = B, for 
I = 1 on the computation region (0 to qma, ) and the extended region (0 to 8.8). 

The rate of convergence of the modified box method for #is case is also somewhat 
slower than for previous cases. The velocity and temperature profiles with qrnax of 4 
converged in a manner very similar to that for the basic Keller box method with 
11 max = 6 except that a discontinuity in the profiles for f” and 8’ exists for the first 
iteration with the modified box method and that convergence is slightly faster. 

The programs for the two algorithms compared here included several features 
considered important for the comparisons. Even though programming efficiency was 
not of prime importance, the programs had the same features and relative 
comparisons of computer times has significance. For the sample eases re~o~ted~ 
inclusion of the asymptotic outer solution with qmax of 6 increased computer time by 
6.7% for 10 iterations. However, reduction of the qmax with the asymptotic outer 
solution to 4 reduces computer time by 25.6% for 1 iterations with ne~~i~ib~e 
sacrifice in accuracy or rate of convergence. As a result, a net savings in ~~rn~~~~ 
time was obtained. 

Incompressible flow past a two dimensional stagnation point has a wel~-~~~~ 
exact, self-similar solution including the pressure gradient [7]. Equation (4) reduces 
to the ordinary differential equation for this problem with the following choice of 
parameters: 
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and 
0 = 1.0. (55) 

The slight modification of the outer asymptotic solution 

f =fb, 
[ 

1 
q--+i’erfcq 711/2 1 

satisfies the proper boundary conditions and qualitatively has the necessary features 
for an initial protile. For this case, imposition of 

PR= 1, a = 0, (56) 

and (54) reduces the energy equation to 

(57) 

With 0, = 0,) 

0(?+0,=0,= 1 (58) 

will be a reasonable initial profile and should be the exact solution. 

-------BASIC KELLER BOX METHOD 

-MODIFIED KELLER BOX 

METHOD 

FIG. 9. The RMS errors in the converged velocity profile on the interval 0 < 7 ,< 4.6 for incom- 
pressible flow at a two dimensional stagnation point with y= 1.4, M= 0, 
fd=l=PR=e,=o,=p=I=C,=F,. 
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Exercise of the modified programs to include the conditions in (54) to (56) 
produced the results shown in Fig. 9 for the RMS error in the velocity profile 
computed using (49). These computations used Aq of .1 but were only CornFa~~~ t 
the exact solution at the tabulated values of r in 171, i ., for A17 of 0.1 for q up to 2. 
and Aq of 0.2 from 2.0 to the maximum value of 4.6. For qmax > 3.5, there is 
negligible difference in the error of either method, and for 2.3 < qmax < 3.5, the 
modified method is somewhat better. At smaller qmax the error for both methods is 
rapidly becoming too large. As expected (58) was essentially the exact solution sime 
the maximum RMS difference of the computed solution and (58) for the qmau of 
Fig. 9 was zero for the basic Keller box method and 0.67 X IO-’ for ihe 

eller box method. 
The exact solution [63 has f' > 0.99 for q > 2.3. Hence the boundary layer 

thickness is the value of y obtained at this value of q. It is interesting to note that the 
S error of the computed solutions does not become i~depende~t of the qmzx used 
1 somewhat larger values are used. 

Solutions were obtained for compressible flow with pressure gradients with p = 
and -0.1. The RMS differences of the velocity and temperature profiles for these 
cases are shown on Fig. 10. The solid curves denote differences based upon 
comparisons with the modified Keller box method applied for qmax of 8 for p = O,S 
and of 10 for p = - 0.1. The dotted curves denote differences based upon 
comparisons with the basic Keller box method applied at corresponding q,,,~ I! 
solutions obtained with qmax less than 8 for p = 0.5 and qmBx less than 10 for /I = 0 
the differences were obtained on the range of the basic comparison s 
extending the solutions using the asymptotic solution for the modifaed 
method and using (53) for the basic Keller box method. These solutions ex 
same features as the flat plate solutions. 

In the process of obtaining the solutions with pressure gradient, it was a~~~re~t 
that the coefficients in (32), (33), (39) and (40) diverge and that the series will 
diverge for finite < and infinite series. Therefore, it was necessary to truncate the 
seri.es at the point (i value) where the series starts to diverge with given c. Then, as I: 
becomes smaller, the number of terms in the truncated series decreases and the error 
increases. The magnitude of this error was monitored and the e 
is in the range of 1 to 2.5 when the errors become larger than B 
the series was truncated after a few terms (actually with only 
errors) to prevent divergence and greater errors should be expe 
note that the RMS error of Fig. 9 and the RMS di~er~n~e 
reasonably small even when the errors in F,(c) and G,(r) become relatively large. 

A more detailed derivation of the asymptotic solution and the box method is 
presented in Ref. [S]. The complete computational results are also reporte 
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FIG. 10. The RMS difference in the converged solutions for the velocity and temperature profiles 
with y  = 1.4, M = 4, C, = 4, F, = 1 = f’, , P,=0.75,0,=0,=1=1,and~=0.5and-0.1onthe 
intervalOto8for~=0.5andOto10for/?=-0.1. 

CONCLUSIONS 

The author is grateful to the reviewers for pointing out that Sills [9, lo] has 
applied several transformations to transform the semi-infinite and infinite flow regions 
of several boundary flows into finite regions such that “outer” boundary conditions 
could be imposed properly. This technique has not been applied or evaluated in this 
investigation. One reviewer points out that “transformation of a semi-infinite interval 
to [0, l] introduces a singularity at x = 1, and this is not always a bargain. In many 
cases in which such transformations are used, an asymptotic expansion must be used 
near x = 1 in order to get the solution away from the singular pont.” The most 
important observation in considering application of Sill’s method or the present 
method is that the present method results in a reduction instead of an addition in the 
number of computation points. 

It is apparent from the present investigation that use of the asymptotic solution has 
at least three significant advantages: 

1. The required range of r for calculation can be reduced for many problems 
with significant saving in computer time. 

2. The accuracy of the solution may be improved significantly. 

3. The estimate of urnax for calculations becomes less critical for cases where 
guidelines may not be known. As a result it is possible to err on the low side for this 
estimate. 
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As a final observation it should be noted that the technique presented here does not 
have- unique application to the Keller box method. It should be applicable to any of 
the iterative techniques discussed by Blottner (3, 41 and may have even wider 
application. 

The minor increase in computer time (6.7% for the same qmax in both algorit 
is apparently just the time required to compute the constants for the asymptotic 
solution from the new iterates after each iteration and to compute the special 
functions in the asymptotic solution. However, the major advantage of including the 
asymptotic solution is that computer time can be reduced (25%) by reducing the 
computation range (i.e., smaller qmax ) without sacrifice in accuracy of the solution. 
Furthermore, the resulting solution can be extended accurately far beyond the 
computation region. 
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